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ABSTRACT: Hot-wire anemometry and high-speed motion-picture 
photography have been used in an experimental study of the structure 
of a vortex ring in air, The velocity field and streamline pattern have 
been determined, together with the vorticity distribution. It has been 
shown that the vorticity is almost entirely localized in the region of 
the core of the vortex ring and quicMy diminishes with distance from 
the core. Analysis of the experimental results permits a conclusion 
concerning the nonstationarity of vortex rings. 

1. Qualitative picture of vortex ring. Figure 1 shows the stream- 
lines in a coordinate system moving with the vortex [1]. The reference 
surface consists of the axis of symmetry r = 0 and a certain dosed 
surface dividing the space into two regions: an inner region GO > 0) 
and an outer region (~0 < 0). In region ~0 > 0 all the stream surfaces 
are closed, and the mass of fluid in the volume bounded by the surface 

= 0 moves in space as a unit. This volume is characterized by high 
stability of motion and there Is relatively little change in translational 
velocity, which indicates that there is lirtie dissipation of energy. This 
flow pattern is also confirmed by photographic studies [2]. However, 
these observations do nor yield sufficiently convincing conclusions 
about the velocity field of a vortex ring, the spatial distribution of 
curl V. and the asymmetry of the streamlines with respect to the plane 
x = 0 due to viscosity effects. The distribution of curl V is especially 
important, since a knowledge of this quantity facilitates the finding 
at a given moment of time of all the other characteristics of the 
hydrodynamic structure and the dissipation function. 

Fig. I 

2. Experimental. Vortex rings in air were obtained by means of the 
apparatus shown schematically in Fig. 2. A piston 1, whose motion is 
arrested by a stop, moves at approximately constant velocity (the 
acceleration length is small as compared with the total displacement 
of the piston) in a cylindrical tube 75 mm in diameter. At the free 
end of the cylinder, which ends in a conical nozzle 2, there is formed 
a vortex ring which subsequently moves so that its axis of symmetry 
coincides with the axis of the cylinder. The shape of nozzle 2 is 
selected experimentally so as to give rings with maximum stability of 
motion. Previous experiments performed by the authors showed that 
the motion of the vortex may be described as follows: in the first stage 
beyond the nozzle the flow takes shape, without yet acquiring the form 
shown in Fig. 1. The path segment corresponding to the first stage is 
small as compared with the total distance traversed by the vortex. In 
the second stage the motion of the vortex is characterized by the 
absence of any visually observable fluctuations; on the other hand, the 
third stage corresponds to motion with clearly expressed oscillations of 
the configuration as a whole and intense mixing of the mass originally 

contained in the region ~ > 0 and the masses of the outer region. 
The velocity field of the vortex rings was determined using two 

hot-wire anemometer probes 8 located on the path followed by the 

vortex in the middle of the section corresponding to the second stage 
(5.45 nozzle diameters from the nozzle exit). The probe wires were 

oriented in space so that the signal of one of them gave the absolute 
vetoeity v = W~x z + v-~, this value of v then being used to calculate 
the velocity components from the signal of the second probe. 

Fig, 2 

In order to visualize the motion of the vortex, we introduced into 
the cylinder pale-gray smoke, which entered the region @ > 0 and 
made it visible. By means of motion-picture photography we were then 

able to obtain data on the position of the configuration in space, and 
by means of time-resolved photography the dependence of the path 
on time, which was then used to determine the translational velocity. 

Apart from the hot-wire anemometer signals, the oscillograms 
also showed: the time-resolved path of the piston, time marks, and 

~ynchropulses that could be used to establish a time correspondence 
between the anemometer signals and the motion-picture record. The 
apparatus and the measuring system were controlled from a common 
switchboard. 

8. Velocity field of vortex ring. By analyzing one of the oscil- 
lograms it is possible to evaluate the velocity at any point of the 
cylindrical section r = oonst. The experiment was repeated five tir~es 
for each of the sections recorded, so that it was possible to check the 
stability of the results and use averaged data in the analysis. 

We selected eight such sections, the first of which coincided with 
the axis of symmetry, the interval between sections being 10 mm. To 
check axial symmetry, two oscillograms, above and below the axis, 
were obtained for the second section. The signals recorded were 
indentical, which fully confirms axial symmetry. 

The results of the analysis are presented in Figs. 3, 4 in the form 
of curves relating the dimensionless velocities v x and v r and the 
dimensionless coordinate x. As characteristic kinematic parameters 
we selected the translational velocity of the vortex v0 and the diameter 
of the circular axis of the vortex D. The velocity v 0 = --1,75 m/see was 
determined from the resuks of motion-picture and time-resolved 
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Fig. 3 

photography; here it is assumed that during the time interval in which 
the measurements are made the translational velocity of the vortex is 
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constant (devia t ion  from v o not more  than •176 The c i rcular  axis 
of the vortex is the c i r c l e  in the region ~ > 0 on which the ve loc i t i es  

are  equa l  to zero in the coordinate  system t ied  to the vortex r ing in 
t rans la t iona l  mot ion .  All  the ve loc i t i e s  are referred to v0, the lengths 
to the vortex d i ame te r  D = 93 ram.  

It follows from an examina t ion  of the graphs that  the m a x i m u m  

ve loc i t i e s  v x of each of the sections l i e  in the p lane  x = 0 passing 
through the c i rcular  axis  of the vortex.  In this p lane  lVxl > lv~l, except  

for a region close to the c i rcular  axis .  At inf in i ty  v x tends to v 0 

a sympto t i ca l l y .  The m a x i m u m  vatues of ve loc i ty  v r are l oca l i zed  on 
the cyl inder  r = D / 2 ,  vanishing at  x = 0. At inf in i ty  vr -~ 0. At x < 0 

parts of some of thecurves are shown by a broken line. The de termina t ion  

of points on these sections was m a d e  dif f icul t  by the perturbing in -  
f luence  of the probe holders;  however,  add i t iona l  exper iments  q u a l i t a -  

t i ve ly  confirmed that  the curves were of this type .  The cho ice  of a 

charac te r i s t i c  d imension and charac te r i s t ic  ve loc i ty  makes  i t  possible 

to c a l c n i a t e  the Reynolds number  R = v0D/u for the vortex.  In our 

case  R= 1.08 �9 104 . 

An impor tan t  charac te r i s t i c  of the hydrodynamic  structure of the 

vortex is the s t r eaml ine  pat tern,  which can be constructed by numer i -  

c a l  in tegra t ion  of the ve loc i ty  f ie ld .  In the ax i symmet r i c  case the 

s t ream funct ion 

: f rvSx - -  rvxdr" 
L 

Here in tegra t ion  is performed along the arbi trary curve L con-  

nec t ing  a ce r ta in  starting point  with the point  at  which the value  of r is 

sought. The s t reaml ines  for equa l ly  spaced values of ~ with a step 

A* = 0.0175 are shown in Fig. 5. Here ~ is a d imensionless  quant i ty  

equa t  to the ra t io  of the s t ream function to the  combina t ion  D 2 v 0. In 
comple t e  conformi ty  with Reynolds' v iewpoint ,  the  zero s t reaml ine  is 

closed and divides  the e in t i re  space in which flow takes  p lace  into 

two regions.  At values  of ~ > 0 a l l  the  s t reaml ines  are  closed,  at 

< 0 they  are open curves. As ~ increases,  the  shape of the closed 

s t reaml ines  approaches tha t  of c i rc les  with center  on the c i rcular  axis 
of the vor tex.  For Ar -< 0.06, where Ar is the dimensionless  d is tance  

from the c i rcu la r  axis ,  the s t reaml ines  a lmost  co inc ide  with c i rc les .  

A cer ta in  a symmet ry  of the srxeamlines with respect  to the p lane  x = 

= 0 is observed.  The  grea tes t  a symmet ry  is possessed By the  s t r eaml ine  

= 0 (the l ine  ~ = 0 cuts off on the r = 0 axis segments  whose lengths  
differ by 10%). The a symmet ry  is probably a t t r ibu tab le  to viscosi ty 

effects .  The shape of the zero s t r eaml ine  is close to an e l l ipse  with 

corresponding semiaxes ,  the prof i le  of the s t reaml ine  being fuller than 

the  prof i le  of this  e l l ipse ,  

4 .  Vo:tex core ,  An analysis  of the ve loc i ty  curves makes  i t  possible 

to dist inguish a cer ta in  toro idal  region,  the so -ca l l ed  core of the vortex 

r ing .  The axis of the  toms is the c i rcu la r  axis of the  vortex,  k char-  

ac te r i s t i c  fea ture  of the  core is the  change  in  absolute  ve loc i ty  from 

zero at  the center  of the core to a m a x i m u m  va lue  at  i ts  edge .  Exami-  

n ing  the curve represent ing the ve loc i ty  v r as a funct ion of x in the 

sect ion r = 0.838, we note  that  c lose to x = 0 i t  is l inear .  This is 

possible i f  the sect ion in question passes through a region charac te r ized  
by ro ta t ion  at  a constant  angular  ve loc i t y .  In this  case,  disregarding 

to toroidaI  charac ter  of the region,  we can wri te  vr = wx, Vx = - w ( r  - 

-- 0.5), where w = const is  the  angular  ve loc i ty  referred to v0/D. With 

the  he lp  of these expressions i t  is easy to establ ish the coordinates  of 

the  center  of the  core,  and h e n c e  the d i a m e t e r  D and the  d i ame te r  d 

of that  part  of the core  which rotates  at  constant  angular  ve loc i ty .  

Since the region of the core is toro idal ,  the  ac tua l  ro ta t ion in any 

sect ion of the  torus cannot  have  a constant  angular  ve loc i ty ,  but s ince 

the  ra t io  of the d imension of the  torus sect ion to the  d i a m e t e r  of i ts  

c i rcu la r  axis  is suf f ic ien t ly  smal t ,  the  dev ia t ion  of t h e  true angular  

ve loc i ty  from the  m e a n  is also s m a l l  and l ies  within the l im i t s  of 

e x p e r i m e n t a l  error.  The  angular  ve loc i ty  in the core is equa l  to 

7 O0 sec -1 
Figure 6 shows a sl i t  photograph of the region close to the  core .  

The region is v i sua l ized  by the smoke  par t ic les  i t  contains .  At the 
center  of the core the density of the  smoke par t ic les  is low, then 
follows an annular  region with m a x i m u m  par t ic le  densi ty .  This smoke 
densi ty pat tern  is eas i ly  expla ined  if  i t  is considered tha t  in the region 
with constant angular  ve loc i ty  the cent r i fugal  force ac t ing  on the 

par t ic les  is proport ional  to the dis tance  from the  center  of the core, 

whi le  outside the  core i t  qu ick ly  decreases with dis tance  (in the case 
of a c lass ica l  cy l ind r i ca l  vortex the cent r i fugal  fo~ce outside the core 
is inversely  proport ional  to the cube of the dis tance  from the center) .  
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Fig. 7 

We have  es t ima ted  the pressure at  the center  of the core using 

the formula for a cy l indr ica l  vortex in an idea l  fluid p = P 0 -  

- ( 1 / 4 ) p w Z d  2, where p is the  densi ty of fluid, and d the d i a m e t e r  of the 
core, this change in pressure was about 0.03% of p~ 

5. Disuibut ion of vo t t l e l ty  ( e ~ l  V). Knowing the ve loc i ty  f ield,  

we can construct the dis tr ibut ion of cur l  V in space.  Figure 7 shows the 

distr ibution of a = [curl  V[ (referred to vo /D)  in  the p lane  x = 0 and 

along the cyl inder  r = 0.5, 

It is a charac te r i s t i c  fea ture  of this dis tr ibut ion that  curl  V is a lmost  

whol ly  concent ra ted  in the r eg ion  of the  core;  outside the core the 
va lue  of curl  V rap id ly  decl ines  to zero with increase  in d is tance  from 

the  core,  On the  basis of this vor t ic i ty  dis tr ibut ion,  we may  assume 

tha t  at the i n i t i a l  instant  curl V exists only in the core, where i t  has a 

constant  va lue .  For this case we have  the  fol lowing formula  laY for the 

t rans la t iona l  ve loc i ty  of a vortex r ing:  

r (1.8D_0 25) 

obtained on the assumption of smal l  d/D.  Assuming T = ('~/4)dZg, we 

can find the cond i t iona l  core d i ame te r  which would correspond to the 

e x p e r i m e n t a l  values  of v0, D, and a .  The condi t iona l  d i ame te r  thus 

computed  is d = 0.166. 
On the other hand,  the d imension corresponding to twice  the 

d i s tance  from the  center  of the core to the points were the ve loc i ty  
acquires  m a x i m u m  values  is  found in the  i n t e rva l  d = 0 .155-0 .180 .  

Thus, the formula  for the t ransIa t iona l  ve loc i ty  of a vortex r ing in an 

i d e a l  fluid is in good agreement  with the ac tua l  mot ion  of a vortex 
r ing at a m o m e n t  suff ic ient ly  c lose to the m o m e n t  of format ion.  

6. S ta t ionar t ty  of the vortex r ing .  For the case of mot ion of vortex 
rings in an i dea l  f lu id  we can wri te  the s ta t ionar i ty  condit ion [3] in the 

form 

l eur lv l= , / (% or o'__,~_0', •  (6.1) 
Ox ~- ' Or 2 r Or 

where f (~)  is an arbi trary function of ~. Using this  condi t ion,  f rom the 

e x p e r i m e n t a l  da ta  of Figs, 5 and 7 i t  is easy to establish tha t  the 

stationarity condition is not satisfied. 

For example, the streamline ~ = 0.I05 (Figs. 5 and 7) gives at x = 

= 0 r I = 0.35, ~i = --4 and r z = 0.618, ~z = -16, respectively. Con- 

sequently, f(~) in (6.1) takes the values fr = --11.4 and fz = -25.9. 

However,  the s ta t ionar i ty  condi t ion  (6.1) requires the constancy of 
Icurl Vl / r  a long the s t r eaml ine  r = const.  Thus, the  vortex dis tr ibut ion 

obta ined  w i l l  not  be  s ta t ionary for the m o d e l  of an i dea l  f lu id .  



90 ZI - IURNAL P R I K L A D N O [  M E K t t A N I K [  I T E K H N I C H E S K O I  F I Z [ K I  

The authors thank V. K. Sheremetov and V. A. Kosinov for their 
assistance. 

REFERENCES 

1, O, Reynolds, "On the resistance encountered by vortex rings, 
etc." Brit. Ass. Rep., Nature, vol. 14, p. 477, 1876. 

2. R. H. Magarvey and C. S. Maclatchy, "The formation and 

structure of vortex rings, ~ Canad. L Phys., vol. 42, No. 4, 1964. 

8. H. Lamb, Hydrodynamics [Russian translation], OGIZ-Gos[e- 

khizdat, 1947. 

19 January 1966 Novosibirsk 


